Demo site Llobregat, Barcelona (WP 6)

Albert Folch

Athens, March 16st 2016

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

THE SITE

THE SITE

CSIC

Hydraulic Parameters:

- Hydraulic Conductivity: 1000 m/day
- Local aquifer thickness; 10-15m
- Hydraulic gradient: 2.3 %

Operational parameters:

- Infiltration surface: =5600 m²
- Infiltration rate (average): 1m³/m²/day

WHAT IS THE FUNNY THING?

An active layer located at the bottom of an infiltration pond to enhance the degradation of certain contaminants.

WHAT IS THE FUNNY THING?

Degradation produced by microorganisms

Biodegradation

🎽 (Bio)clogging

What kind of bacteria we find and where?

How are they affected by environmental conditions (T, sal, ...)?

> UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

CSI

MICROBIOLOGY

What microbiological changes produce MAR with a reactive layer?

MICROBIOLOGY: Dendogram dry conditions

Generated by Cluster analysis using UPGMA algorithm representing the similarities between samples.

CSI

MICROBIOLOGY: Dendogram under recharge conditions

CSIC

GHS

MICROBIOLOGY

What microbiological changes produce MAR with a reactive layer?

OTHER IMPORTANT PARAMETERS

Measuring physicochemical parameters involved in microbiological activity

UNIVERSITAT POLITÈCNICA DE CATALUNYA

BARCELONATECH

CSIC

WHATS THE CICLE OF THE ORGANIC CARBON?

Batch experiments indicate that the reactive layer can induce denitrification even three years after installation

Continuous measurement of Eh and T

CSIC

http://www.mvhconsult.nl/

WHATS THE CICLE OF THE ORGANIC CARBON?

Continuous measurement of Eh and T in Castebisbal ponds \Rightarrow Same water with no organic layer (17/02/2016)

BARCELONATECH

FUTURE WORKS (Mentioned in 2014)

- How to enhance natural attenuation of emerging pollutants in MAR applying engineering injection-extraction
- Evaluating the degradation capabilities of different materials for reactive layers in MAR (Univ. Barcelona, WADISMAR).
- Understanding degradation mechanism of antibiotics: inside sulfamethoxazole and diclofenac.

Modeling organic matter degradation of reactive layer during MAR

Mechanism degradation of SMX under denitrifying conditions

HOW CAN CHAOTIC ADVECTION IMPROVE THE EMERGING POLLUTANTS DEGRADATION DURING MANAGED AQUIFER RECHARGE?

Paula Rodríguez-Escales

prescales@gmail.com

To demonstrate if chaotic advection **increases the mixing** between recharged solution and groundwater in an infiltration recharge pond.

To demonstrate if chaotic advection improves the **redox reaction processes.**

To evaluate if an **emerging compound degradation (3 benzotriazoles) is improved** by applying chaotic advection.

SET-UP

Model sketch

These models only reproduce the saturated zone. 2D MODEL

FAULT TREE OF INFILTRATION POUNDS IN MANAGED AQUIFER RECHARGE

CSIC

ANSWER A CUESTIONARE

II. OPERATIONAL PROCESSES

Please, answer the questions asking yourself if in your MAR facilities exists these types of risk. If YES, try to quantify as high, medium or low risk. If you do not know the risk, mark unknown.

HIGH

CSIC

1 NON-TECHNICAL CONSTRAINTS		
	Y/N	
111 Territorial constraints	Y/N	
1111 European	ý Y/N	
1112 National	Y/N	
1.1.1.3 Regional/Local	Y/N	
1.1.2 Soope of legislation	Y/N	
1.1.2.1 Health legislation	Y/N	
1.1.2.2 Others	Y/N	
1.2 Economic constraints	Y/N	
1.2.1 Macroeconomic constraints	Y/N	
1.2.2 Microeconomic constraints	Y/N	
1.2.2.1 Not enough water to recharge due to other economical uses	Y/N	
1.2.2.1.1 Industrial use	Y/N	
1.2.2.1.2 Agricultural use	Y/N	
1.2.2.1.3 Domestic use	Y/N	
1.2.2.2 Cost restriction	Y/N	
1.2.2.2.1 Low price of water	Y/N	
1.2.2.2.2 High installation cost	Y/N	
1.2.2.2.3 High maintenance cost/maintenance requirements	Y/N	
1.3 Social unacceptance	Y/N	
1.3.1 Health risk perception	Y/N	
1.3.2 High cost perception	Y/N	
1.3.3 Behavioral requirements	Y/N	
1.3.4 Children surveillance	Y/N	
1.3.5 Fair distribution of treated water	Y/N	
1.3.6 Perception of effectiveness	Y/N	
1.4 Governance	Y/N	
1.5 Lack of coordination among stakeholders involved in MAR	Y/N	
1.5.1 Lack of coordination	Y/N	
1.5.2 Non-technical knowledge	Y/N	
2 TECHNICAL CONSTRAINTS		
2.1 Structural Damages (if YES continue)	Y / N	
2.1.1 Flooding	Y/N	

Thank you

QUESTIONS?

DISCUSSION?

MICROBIOLOGY: Dendrogram under recharge conditions

Generated by Cluster analysis using UPGMA algorithm representing the similarities between samples.

